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Stochastic Evolution from the Loewner Equation derived by Schramm
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Prizes ... Stochastic Loewner ...

Names and rewards ...

e Oded Schramm: the 2002 Clay Research Institute Award
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Prizes ... Stochastic Loewner ...

... and some more

e Greg Lawler: the 2006 George Polya Award (with Schramm and Werner)
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The original Stochastic Loewner ...

The (everyday) Loewner equation

e Karel Lowner, Karl Lowner, Charles Loewner: 1893 - 1968
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e Loewner equation (1923) - used to prove the Bieberbach conjecture
(|an| < n for univalent functions) by Louis de Branges (1985)
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Maps and shapes Stochastic Loewner ...

Loewner equation: evolution of conformal maps
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Loewner equation: evolution of conformal maps

(t+dt) B} ,
D

t+dt Ettdt T
‘ dg;
O Z gt ét Z

dgt(w) =&+ \/ (w — &)? + 4dt,

2dt
A4dt ~ :
gevar(z) = &+ V/(g¢ i 9:(z) ¥ 9¢(2) — &
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Maps and shapes Stochastic Loewner ...

Standard maps

e Upper half-plane: chordal case
g(2) = 2[ge(z) — &7,

e Unit disc: radial case

: . ge(z) + e
gt(z) - _gt(z) gt(z) . eif(t)’

e Stripe {z € C: |Sz| < wA}: dipolar case

o A1
G:(2) = tanh|(z — &)/A]
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Stochastic evolution Stochastic Loewner ...

Schramm-Loewner evolution

Adding randomness, statistical independence, reflexion symmetry:
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Schramm-Loewner evolution

Adding randomness, statistical independence, reflexion symmetry:

2
gt(z) . \/EBt7 go

Orgi(z) =

(z) = z (SLEy).

h(

(a)

UNM 2007 7



Properties Stochastic Loewner ...

The phases of SLE

O0< K4 4<K <8 K >8

Fractal dimension of the trace dy:

_J 1+3 for k <8,
df(m)_{Q for k > 8.
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Properties Stochastic Loewner ...

Scaling properties of SLE traces

N, ~ e_df("’), multifractal spectrum
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CFT models

2D critical phenomena and CFT

e 2D Ising model :

B SiS;+hd_Ss

(4,5) ¢
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CFT models Stochastic Loewner ...

2D critical phenomena and CFT

e 2D Ising model :

= Y exp |-B(D_SiS; +hZS

S;==+1 (i,7)

e Onsager (1934) - Baxter (transfer matrix)

e McCoy and Wu (1972), Jimbo-Miwa-Sato-Ueno (1980) - Painlevé
transcendents: conformal invariance as linearization
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2D critical models Stochastic Loewner ...

SLE and lattice statistical models

SLE traces are critical curves in corresponding lattice models.




2D critical models Stochastic Loewner ...

SLE and lattice statistical models

SLE traces are critical curves in corresponding lattice models.

— — — 4)? 16
Cro = (8= 3r)(x = 6) _ 1— S(R ) . Cp = Cuy, K = —.
2K 2K K
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2D critical models Stochastic Loewner ...

Known and conjectured correspondences



2D critical models

UNM 2007

Stochastic Loewner ...

Known and conjectured correspondences

Lattice model K Cr
Loop-erased random walk 2 —2
Self-avoiding random walk 8/31 0

Ising model

spin cluster boundaries 3 |1/2
Dimer tilings 4 1

Harmonic explorer 4 1

Level lines of Gaussian field 4 1

Percolation cluster boundaries | 6 0

Uniform spanning trees 3 —2
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2D critical models

Ising clusters

Stochastic Loewner ...
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2D critical models
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SAW random walk
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2D critical models

UNM 2007

Gaussian field level lines
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2D critical models
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Percolation clusters
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Computing with SLE Stochastic Loewner ...

Cardy’s formula for anisotropic percolation
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Cardy’s formula for anisotropic percolation

PFQB :PrQE Wb

0
CFT

SLE

r(z-3)
r2-Hr(i-9

4 4 4
P |crossing| = )

ri=4/%, Fy (—, l——=2——r
K K K
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Computing with SLE Stochastic Loewner ...

Radial SLE

gt(Z) _|_€7;\/EB(t)
gt(z) _ eiVEB(t)

g1(2) = —g4(2)

1 g, D

-~

z - plane w - plane
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Computing with SLE Stochastic Loewner ...

Multiple SLE

N driving forces &;:

2dt

i=1 gt(z) — Gt



Computing with SLE Stochastic Loewner ...

Multiple SLE

N driving forces &;:

n

dgi(z) = Z 2dt

i1 9t(2) — fti).

N-point correlation functions

X3 X3
X4 X4

5 Xy
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Computing with SLE Stochastic Loewner ...

Multiple radial SLE’s

J. Cardy, Stochastic Loewner evolution and Dyson’s circular ensembles,
J. Phys. A: Math. Gen. 36, L379 (2003); arXiv: math-ph/0301039.

O
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Computing with SLE Stochastic Loewner ...

Radial SLE and Calogero-Sutherland model

Simple-pole solution of Kadomtsev-Petviashvilii integrable hierarchy
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Radial SLE and Calogero-Sutherland model

Simple-pole solution of Kadomtsev-Petviashvilii integrable hierarchy

Paiopx [ |em—en" =4/x (Dyson)

1<j<k<N

Correlations functions of N radial SLE solve the Calogero-Sutherland
model:

K 92 2—k 1 N(N —1)
H__§§j:ae]2+ 2K > —0:)/2 2k

o sin (0,
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Exotic SLE Stochastic Loewner ...

Zero vorticity lines in 2D turbulence and SLEg

D. Bernard, G. Boffetta, A. Celani, G. Falkovich, Conformal tnvariance in
two-dimensional turbulence, Nature Physics 2, 124 (2006).
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Exotic SLE Stochastic Loewner ...

Domain walls in Ising spin glasses

C. Amoruso, A. K. Hartmann, M. B. Hastings, and M. A. Moore,
Conformal invariance and SLE in two-dimensional Ising spin glasses,
arXiv: cond-mat/0601711.

Conformal invariance of domain walls:

5
dy = e k =2, Loop-erased RW
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Generalized SLE Stochastic Loewner ...

SLE chains and 2D growth processes

N — oo generalization of N radial SLE:

0 j{ pi(u)du (gt(Z) + U>

Egt(z) = —9:() 2imu \gi(2) —u



Generalized SLE Stochastic Loewner ...

SLE chains and 2D growth processes

N — oo generalization of N radial SLE:

() = —gi(z) LI (2L

2imu \g(z) — u

b=1/2
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Generalized SLE Stochastic Loewner ...

2D growth under harmonic forces: DLA and LG

e Local growth law: dP(T) _671@5(4_7:)
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Generalized SLE Stochastic Loewner ...

2D growth under harmonic forces: DLA and LG

e Local growth law: dlzsf) = —§n¢(4_7’“)

e Discrete process: Diffusion Limited Aggregation

e Averaged process: Laplacian Growth
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Generalized SLE

UNM 2007

Radial diffusion limited aggregation

Stochastic Loewner ...
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Generalized SLE Stochastic Loewner ...

Radial laplacian growth (idealized Hele-Shaw flows)

Vn — _vnp
Ap =0 outside
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Generalized SLE Stochastic Loewner ...

Resolving finite-time singularities of Hele-Shaw flows
(Saffman, Taylor, Sakai, Kadanoff, Bensimon, Howison,
King, Tanveer, Crowdy, ...)
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Resolving finite-time singularities of Hele-Shaw flows
(Saffman, Taylor, Sakai, Kadanoff, Bensimon, Howison,
King, Tanveer, Crowdy, ...)

=
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Generalized SLE Stochastic Loewner ...

Conclusions

e New theoretical tool for stochastic processes with exclusion
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Generalized SLE

Conclusions

e New theoretical tool for stochastic processes with exclusion
e Exact derivations for old CFT results

e Continuum generalizations: planar growth processes

UNM 2007

Stochastic Loewner ...

29



